Formulae and Asymptotics for Coefficients of Algebraic Functions
نویسندگان
چکیده
We study the coefficients of algebraic functions ∑ n≥0 fnz n. First, we recall the too-little-known fact that these coefficients fn always admit a closed form. Then we study their asymptotics, known to be of the type fn ∼ CAnnα. When the function is a power series associated to a contextfree grammar, we solve a folklore conjecture: the critical exponents α cannot be 1/3 or −5/2; they in fact belong to a proper subset of the dyadic numbers. We initiate the study of the set of possible values for A. We extend what Philippe Flajolet called the Drmota–Lalley–Woods theorem (which states that α = −3/2 when the dependency graph associated to the algebraic system defining the function is strongly connected). We fully characterize the possible singular behaviors in the non-strongly connected case. As a corollary, the generating functions of certain lattice paths and planar maps are not determined by a context-free grammar (i.e., their generating functions are not N-algebraic). We give examples of Gaussian limit laws (beyond the case of the Drmota–Lalley–Woods theorem), and examples of non-Gaussian limit laws. We then extend our work to systems involving non-polynomial entire functions (non-strongly connected systems, fixed points of entire functions with positive coefficients). We give several closure properties for N-algebraic functions. We end by discussing a few extensions of our results (infinite systems of equations, algorithmic aspects). Résumé. Cet article a pour héros les coefficients des fonctions algébriques. Après avoir rappelé le fait trop peu connu que ces coefficients fn admettent toujours une forme close, nous étudions leur asymptotique fn ∼ CAnnα. Lorsque la fonction algébrique est la série génératrice d’une grammaire noncontextuelle, nous résolvons une vieille conjecture du folklore : les exposants critiques α ne peuvent pas être 1/3 ou −5/2 et sont en fait restreints à un sousensemble des nombres dyadiques. Nous amorçons aussi l’étude de l’ensemble des valeurs possibles pour A. Nous étendons ce que Philippe Flajolet appelait le théorème de Drmota–Lalley–Woods (qui affirme que α = −3/2 dès lors qu’un ”graphe de dépendance” associé au système algébrique est fortement connexe) : nous caractérisons complètement les exposants critiques dans le cas non fortement connexe. Un corolaire immédiat est que certaines marches et cartes planaires ne peuvent pas être engendrées par une grammaire noncontextuelle non ambigüe (i. e., leur série génératrice n’est pas N-algébrique). Nous donnons un critère pour l’obtention d’une loi limite gaussienne (cas non couvert par le théorème de Drmota–Lalley–Woods), et des exemples de lois non gaussiennes. Nous étendons nos résultats aux systèmes d’équations de degré infini (systèmes non fortement connexes impliquant des points fixes de fonctions entières à coefficients positifs). Nous donnons quelques propriétés de clôture pour les fonctions N-algébriques. Nous terminons par diverses extensions de nos résultats (systèmes infinis d’équations, aspects algorithmiques). FORMULAE AND ASYMPTOTICS FOR COEFFICIENTS OF ALGEBRAIC FUNCTIONS 3
منابع مشابه
Asymptotics of Bivariate Generating Functions with Algebraic Singularities
ASYMPTOTICS OF BIVARIATE GENERATING FUNCTIONS WITH ALGEBRAIC SINGULARITIES Torin Greenwood Robin Pemantle Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reduci...
متن کاملAsymptotics of the Coefficients of Bivariate Analytic Functions with Algebraic Singularities (preprint)
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new mult...
متن کاملAutomatic asymptotics for coefficients of smooth, bivariate rational functions
We consider a bivariate rational generating function F (x, y) = P (x, y) Q(x, y) = ∑ r,s≥0 arsx y under the assumption that the complex algebraic curve V on which Q vanishes is smooth. Formulae for the asymptotics of the coefficients {ars} are derived in [PW02]. These formulae are in terms of algebraic and topological invariants of V, but up to now these invariants could be computed only under ...
متن کاملAsymptotics of bivariate analytic functions with algebraic singularities
In this paper, we use the multivariate analytic techniques of Pemantle and Wilson to find asymptotic formulae for the coefficients of a broad class of multivariate generating functions with algebraic singularities. Flajolet and Odlyzko (1990) analyzed the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multi...
متن کاملCoefficients of algebraic functions: formulae and asymptotics
This paper studies the coefficients of algebraic functions. First, we recall the too-little-known fact that these coefficients fn have a closed form. Then, we study their asymptotics, known to be of the type fn ∼ CAn. When the function is a power series associated to a context-free grammar, we solve a folklore conjecture: the appearing critical exponents α can not be 1/3 or −5/2, they in fact b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2015